Metal-ligand cooperation by aromatization-dearomatization as a tool in single bond activation.

نویسنده

  • David Milstein
چکیده

Metal-ligand cooperation (MLC) plays an important role in bond activation processes, enabling many chemical and biological catalytic reactions. A recent new mode of activation of chemical bonds involves ligand aromatization-dearomatization processes in pyridine-based pincer complexes in which chemical bonds are broken reversibly across the metal centre and the pincer-ligand arm, leading to new bond-making and -breaking processes, and new catalysis. In this short review, such processes are briefly exemplified in the activation of C-H, H-H, O-H, N-H and B-H bonds, and mechanistic insight is provided. This new bond activation mode has led to the development of various catalytic reactions, mainly based on alcohols and amines, and to a stepwise approach to thermal H2 and light-induced O2 liberation from water.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalytic metal-free intramolecular hydroaminations of non-activated aminoalkenes: a computational exploration.

Frustrated Lewis pairs (FLPs) has been applied to catalytic metal-free hydrogenation. Can the FLP reactivity be used for catalytic hydroamination? Using density functional theory (DFT) calculations, we have explored whether the molecules cat1-cat3, which were previously designed by integrating the dearomatization-aromatization effect and the FLP reactivity, can catalyze the intramolecular hydro...

متن کامل

Efficient Hydrogenation of Ketones and Aldehydes Catalyzed by Well-Defined Iron(II) PNP Pincer Complexes: Evidence for an Insertion Mechanism

We have prepared and structurally characterized a new class of Fe(II) PNP pincer hydride complexes [Fe(PNP-iPr)(H)(CO)(L)] n (L = Br-, CH3CN, pyridine, PMe3, SCN-, CO, BH4-; n = 0, +1) based on the 2,6-diaminopyridine scaffold where the PiPr2 moieties of the PNP ligand are connected to the pyridine ring via NH and/or NMe spacers. Complexes [Fe(PNP-iPr)(H)(CO)(L)] n with labile ligands (L = Br-,...

متن کامل

DFT Studies on the Palladium-Catalyzed Dearomatization Reaction between Chloromethylnaphthalene and the Cyclic Amine Morpholine

Density functional theory calculations have been performed to investigate the mechanisms of the Pdcatalyzed dearomatization reaction between chloromethylnaphthalene and the cyclic amine morpholine. The calculation results indicate that the reductive elimination leading to the formation of the dearomatic product takes place via an intramolecular C−N bond coupling between the para carbon of an η-...

متن کامل

Synthesis of Zinc Dimethyldithiocarbamate by Reductive Disulfide Bond Cleavage of Tetramethylthiuram Disulfide in Presence of Zn2+

The zinc(II) complex [Zn2(dmdtc)2(μ-dmdtc)2] has been synthesized directly from thiram ligand, containing a disulfide bond {dmdtc = N,N-dimethyldithiocarbamate; thiram = N,N-tetramethylthiuram disulfide}, and characterized by elemental analysis and spectroscopic methods. Surprisingly thiram, undergoes a reductive disulfide bond scission upon reaction with Zn2+ in methanolic media to give the [Z...

متن کامل

Synthesis, Characterization and Theoretical Studies of a New Macroacyclic Schiff-Base Ligand Containing Piperazine Moiety and Related Mn(II), Cu(II), Ni(II) and Cd(II) Complexes

Four new [NiH2L](ClO4)2 (1), [CuH2L](ClO4)2 (2), [MnH2L](ClO4)2 (3) and [CdH2L](ClO4)2 (4), complexes were prepared by the reaction of a new Schiff base ligand and Cu(II), Ni(II), Mn (II) and Zn (II) metal ions in equemolar ratios. The ligand, H2L was synthesized by reaction of 1, 4- bis (2- formylphenyl) piperazine and ethanol amine and characterized with IR and 1H,13C NMR spectroscopy. All co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 373 2037  شماره 

صفحات  -

تاریخ انتشار 2015